
Database Design and Development Simplified

TABLE OF CONTENTS

i | P a g e C J M a r s e l i s

SECTION 1: DATABASE DESIGN AND ENTITY RELATIONSHIP DIAGRAMS (ERDS) ___________ 1

CHAPTER 1: WHY IS DATABASE DESIGN IMPORTANT? __ 1
I. Data, Information and Knowledge ___ 1
II. Why do we need good design? __ 1

CHAPTER 2: BACKGROUND TO ERD __ 4
I. ²ƘŀǘΩǎ ŀƴ 9w5Κ__ 4
II. Business Rules for Glenside Bank __ 4
III. Components of an ERD __ 4
IV. ERD Styles __ 7
V. Keys ___ 8
VI. Integrity Rules __ 11
VII. Relationship Rules ___ 13

CHAPTER 3: EXAMPLE OF CREATING AN ERD __ 15
I. 1:1 Relationships __ 15
II. 1:M Relationships ___ 16
III. M:N Relationship ___ 20
IV. Final ERD __ 22
V. Placements of attributes in tables __ 23

CHAPTER 4: INVOICE EXAMPLE __ 24
I. Entities and Attributes: ___ 24
II. Relationships: __ 25
III. ERD __ 26
IV. Variations on a theme ___ 27

CHAPTER 5: DATA DICTIONARY __ 28
I. What is a data dictionary? __ 28

SECTION 2: ACCESS TUTORIAL ___ 29

CHAPTER 6: INTRODUCTION __ 29
I. Access 2007 Interface __ 29

CHAPTER 7: TABLES ___ 30
I. Introduction to Tables __ 30
II. Table Relationships __ 38

CHAPTER 8 QUERIES ___ 41
I. Introduction __ 41
II. Select Queries __ 41
III. Parameter Queries __ 44
IV. Crosstab Queries __ 46
V. Action Queries __ 48
VI. Aggregate Functions with Group By clause ___ 51

CHAPTER 9: FORMS ___ 57
I. Introduction to Forms __ 57
II. Create Form by Using Wizard __ 57
III. Create Form in Design View ___ 60
IV. Adding Records Using a Form __ 62
V. Editing Forms __ 62
VI. Form Controls __ 64
VII. Sub Forms for 1:M Relationships ___ 71
VIII. Sub Forms for M:M Relationships __ 76
IX. Multiple-Page Forms Using Tabs ___ 79

Database Design and Development Simplified

TABLE OF CONTENTS

ii | P a g e C J M a r s e l i s

CHAPTER 10: REPORTS ___ 81
I. Introduction to Reports ___ 81
II. Types of Reports __ 81
III. Create Report Using the Wizard __ 81
IV. Create Report in Design View __ 83
V. Printing Reports __ 84

CHAPTER 11: SWITCHBOARD__ 85
I. Introduction to Switchboards __ 85
II. Create a Switchboard __ 86
III. Create a Switchboard Within a Switchboard __ 88
IV. Display Switchboard When Database Opens __ 90

CHAPTER 12: KEYBOARD SHORTCUTS CUTS ___ 92
CHAPTER 13: PIVOT TABLES __ 93

I. Introduction to Pivot Tables ___ 93
II. Introduction to ODBC __ 94
III. Connecting Oracle to Access via an ODBC Connection ____________________________________ 94
IV. Background to Connecting Access to Other Data Formats: ________________________________ 96
V. Connect Excel to Access __ 97
VI. Connecting Text Files to Access __ 98
VII. Creating Queries across Access and Oracle __ 100
VIII. Crosstab Queries: __ 101
IX. Crosstab queries in Excel 2007 __ 105

SECTION 3: TOAD ___ 107

CHAPTER 14: INTRODUCTION AND LOADING TOAD ___ 107
I. What is TOAD ___ 107
II. Loading and Configuring TOAD: ___ 107
III. Introduction to TOAD Interface ___ 109

CHAPTER 15: TABLES IN TOAD __ 110
I. Creating a table ___ 110
II. Adding constraints to a table ___ 111

CHAPTER 16: SCRIPTS IN TOAD __ 114
I. Documenting Table Creation in Toad ___ 114
II. Loading a Script into TOAD ___ 116

CHAPTER 17: OTHER FUNCTIONS IN TOAD __ 117
I. Using TOAD to write SQL statements ___ 117
II. Using TOAD to Diagram and Modify a database__ 119
III. Exit Toad ___ 121

SECTION 4: SQL ___ 122

CHAPTER 18: WELCOME TO SQL ___ 122
I. Introduction to SQL ___ 122
II. Introduction to SQL*Plus __ 122
III. DDL vs. DML __ 125

CHAPTER 19: DDL ς DATA DEFINITION LANGUAGE ___ 127
I. Create Table __ 127
II. Drop Table __ 128
III. Alter Table __ 128
IV. Describe __ 129

CHAPTER 20: CONSTRAINTS (DDL CONTINUED) ___ 130

Database Design and Development Simplified

TABLE OF CONTENTS

iii | P a g e C J M a r s e l i s

I. Introduction to Integrity Constraints ___ 130
II. Primary Key Constraints ___ 130
III. Foreign Key Constraint: __ 131
IV. Null Value Constraint ___ 132
V. Default Value Constraint __ 133
VI. Unique Constraint __ 134
VII. Check Constraint ___ 134

CHAPTER 21: DML - COMMIT, ROLLBACK, AND FORMATTING ___ 136
I. Commit and Rollback ___ 136
II. Formatting Results ___ 136

CHAPTER 22: DML - INSERTING DATA INTO TABLES___ 140
I. Insert Statement ___ 140
II. Querying Rows with Select Statement __ 140
III. TO_DATE: __ 141

CHAPTER 23: DML - SELECT ___ 143
I. Select Query Background __ 143
II. Simple SELECT ___ 143
III. The Asterisk (*) Wildcard __ 144
IV. Filtering in Select Statement (Projection) to Specific Columns: _____________________________ 144
V. Order of Attributes in Select __ 145
VI. Distinct __ 145
VII. Restrict relational operator ς Where Clause ___ 146
VIII. Searching for rows ___ 147
IX. Wildcard characters: __ 148
X. Comparison Operators __ 149
XI. Logical Operators __ 152
XII. NOT operator ___ 153
XIII. IS NULL and IS NOT NULL Operator __ 153
XIV. Precedence ___ 154
XV. Sorting the Output ς Order by __ 155
XVI. Alias Operator ___ 156
XVII. Math in SQL ___ 157

CHAPTER 24: SET OPERATORS __ 159
I. Union __ 159
II. Intersect ___ 160

CHAPTER 25: DML AND JOINS ___ 161
I. Inner Joins __ 161
II. Outer Joins__ 165
III. ANSI standard format for Joins ___ 166

CHAPTER 26: DML - UPDATE AND DELETE RECORDS __ 169
I. Update Statement __ 169
II. DELETE Statement __ 170

CHAPTER 27: DML- DATE FUNCTIONS ___ 173
I. Date Background Information: __ 173
II. Sysdate __ 174

CHAPTER 28: FUNCTIONS IN SQL ___ 176
I. Basics of functions ___ 176
II. Common Functions ___ 176
III. Date Functions __ 177
IV. String Functions ___ 178

CHAPTER 29: AGGREGATION __ 181

Database Design and Development Simplified

TABLE OF CONTENTS

iv | P a g e C J M a r s e l i s

I. Introduction to Aggregation __ 181
II. COUNT ___ 181
III. SUM ___ 182
IV. AVERAGE ___ 182
V. MIN and MAX ___ 183
VI. GROUP BY __ 183
VII. HAVING __ 188

CHAPTER 30: NESTED QUERY/SUBQUERY ___ 193
I. Introduction to Nested or Sub Queries __ 193
II. Examples with Nested Queries __ 193

Database Design and Development Simplified

v | P a g e C J M a r s e l i s

ACCESS AND PIVOT TABLE PRACTICE EXERCISES

PRACTICE 1 ς CREATE TABLES IN ACCESS: ___ 36

PRACTICE 2 - CREATE AN ERD: ___ 40

PRACTICE 3 - CREATE QUERIES: ___ 55

PRACTICE 4 - CREATE A DATA ENTRY FORM USING FORM WIZARD:____________________ 60

PRACTICE 5 - CREATE A DATA ENTRY FORM IN DESIGN VIEW: ________________________ 61

PRACTICE 6 - ADD RECORDS TO A FORM: ___ 62

PRACTICE 7 - CREATE A COMBO BOX: __ 67

PRACTICE 8 - CREATE BUTTONS ON A FORM: ______________________________________ 70

PRACTICE 9 ς CREATE A FORM WITH A SUBFORM: _________________________________ 75

PRACTICE 10 - CREATE A M:N FORM ___ 78

PRACTICE 11 ς CREATE A FORM WITH TAB CONTROL: _______________________________ 80

PRACTICE 12 - CREATE A REPORT: ___ 83

PRACTICE 13 ς CREATE A SWITCHBOARD: __ 91

PRACTICE 14 - CREATE A SELECT QUERY WITH LINKED AND IMPORTED DATA SOURCES: _ 101

PRACTICE 15: CREATE CROSSTAB QUERIES IN ACCESS _____________________________ 104

PRACTICE 16 ς CREATE A PIVOT TABLE AND CHART IN EXCEL: _______________________ 106

Database Design and Development Simplified

 C J M a r s e l i s

Database Design and Entity Relationship Diagrams

1 | P a g e C J M a r s e l i s

Section 1: Database Design and Entity Relationship
Diagrams (ERDs)

Chapter 1: Why is database design important?

I. Data, Information and Knowledge

Businesses collect and store data on a variety of things such as a price, a supplier, a product, or
a sale. But the data doesnôt really mean anything at this point. When the organization
summarizes the information, applies context it, and presents the data in a fashion which is useful
to the organization, the data has been transformed into information. Information is useful and
typically provides answers to "who", "what", "where", and "when" questions.

While information is vital for organizations, firms that convert information into knowledge excel in
their work. Knowledge answers ñhowò questions.

Finally, if you move up to the top of the knowledge pyramid, you achieve wisdom or true
understanding.

1

As business people, we try and move up the pyramid to move towards wisdom. Sounds like a
Jedi in Star Wars, huh? So how do organizations do this? To start, organizations need good
databases that facilitate the collection, storage, and dissemination of information within the
organization.

II. Why do we need good design?

An organizationôs success is often tied to the efficient and effective flow of information. If the data
of an organization is not stored in a properly designed database, the organization cannot make
good business decisions based on data. If the data is stored in a flawed manner, the user can
retrieve inconsistent results and the data is said to lack integrity. The user cannot be confident
with the information retrieved. If the user doesnôt trust the results received, he will not be able to
make a decision with certainty.

Consider the following. What if you wanted to take the Temple shuttle bus from Ambler Campus
to Main Campus. You look at the schedule on Templeôs portal and it says the bus will arrive at
Ambler at 8:15 AM. You arrive at the stop at 8:10 AM and wait for the bus. It finally arrives at
10:15 AM, and now youôve missed your 9:40 AM class. It turns out that the schedule isnôt
updated regularly so you canôt rely on it. Sometimes the bus arrives at 8:05, sometimes at 8:17,
and sometimes it is cancelled, but these changes are not reflected on the website. What will you
do next time? Will you look at the online schedule or will you just go to the stop super early in the
hopes that youôll catch the bus whenever it arrives?

1
 http://www.systems-thinking.org/dikw/dikw.htm

Database Design and Entity Relationship Diagrams

2 | P a g e C J M a r s e l i s

The ERD is a model (a representation) of how the database is structured. The ERD is designed
to allow the database designer to optimize the manner in which the data is stored to facilitate the
use of the data within the organization.

A. Data Anomalies

Weôve all had situations where weôve talked to a company and found out that the information
stored isnôt correct. Maybe youôve called a store to confirm an item you want is in stock. You
are told that there are 10 items in inventory. When you get there, it turns out they are out of
stock.

For example, I received a book in the mail from a publisher. The book had been sent to my
old house, and I moved from over a year ago. While this seems reasonable, the publisher
knew that I had moved because theyôve sent other books to my new address. Why would
some books be sent to the correct address and some routed to the old location? The most
common reason for these kinds of situations is that organizations have many databases and
many tables within each database, and these tables hold redundant data.

What if the publisher had a faculty table that listed each faculty member to whom they send
books? The publisher also has an order table that shows which books that faculty member
ordered and this table includes the address to which the order was sent.

This is a perfect environment for breeding data anomalies. An anomaly is an abnormality in
our data and we want to avoid abnormalities in database design. There are three types of
data anomalies that plague us.

1. Insertion (add) anomaly

In an insert anomaly a row cannot be inserted (added) to one table unless it is added
somewhere else. This means there is a forced dependency between two tables that
should not exist. In our publisher example it might be that a faculty member cannot be
added to the database until he/she places an order. This is not an appropriate
dependency. The publisher should be able to add a new faculty member, and then add
orders as they are placed.

2. Deletion anomaly

A deletion anomaly is just the reverse of an insertion anomaly. In other words a table is
deleted and the data from another table cannot be retrieved. For instance, if we store
information about the customer such as the address in the order table and then we delete
an order, the information about the customerôs account including the address will also be
lost.

2
 We donôt want to lose the customerôs address. We just want to remove an order.

3. Modification (update) anomaly

In a modification anomaly, values of an attribute must be duplicated multiple times in a
table. If the publisher stored my address each time an order was placed (rather than
storing my address once), when I moved the publisher would need to update each row
where my old address appears. An even worse scenario involves organizations which
only update the address on some of the rows while others are left unchanged. This
would lead to data retrievals that are inconsistent with some rows showing a new address
and others showing an older location. As weôve learned, inconsistent retrievals lead to
loss of integrity in the database.

If the database had been properly designed, my address would have been stored once
for each location where I receive books (work or home). When my home address
changed, the organization would only need to update my home location once, and all of

2

http://books.google.com/books?id=8TpWEIA9sEcC&pg=PT171&lpg=PT171&dq=insert+anomaly&source=web&o

ts=2scsXXmSuu&sig=ScpWtxjfbIbji-PWCo45x76H8XU&hl=en&sa=X&oi=book_result&resnum=8&ct=result

Database Design and Entity Relationship Diagrams

3 | P a g e C J M a r s e l i s

the rows related to this home address would be updated appropriately. The key is to
capture the value of an attribute once, store it once, and use that one data value
consistently.

Typically, companies would prefer to collect the value of an attribute for a row
consistently wrong, as opposed to sometimes accurately and sometimes inaccurately.
This may seem odd but really makes sense if you think about it. If the information is
sometimes correct you falsely assume it is always right and rely on it until you are faced
with a situation where the data is clearly inaccurate. At that point, you realize you may
have made decisions on poor quality information. This situation is more difficult to correct
as well since you need to consider each individual row and assess whether that rowôs
data is correct or not.

Conversely, if the information is consistently inaccurate, it is more likely youôll note the
error earlier and initiate the process to correct it faster. Also, with a consistent error, you
may be able to globally update the information, and that is much simpler then considering
each row on a case by case basis.

B. We always want to avoid data anomalies and maintain data in one location which is accurate
and timely. When users of the data can rely and trust the results to be updated and accurate,
they feel more confident making a business decision since the veracity of the data is not
questioned.

Database Design and Entity Relationship Diagrams

4 | P a g e C J M a r s e l i s

Chapter 2: Background to ERD

I. Whatôs an ERD?

An ERD is an Entity Relationship Diagram. Just as the name implies, an ERD shows entities and
their relationships to one another. An ERD shows the data elements stored in a database and in
what manner the data is stored.

II. Business Rules for Glenside Bank

One of the key aspects of an ERD is that it models the data needs of the organization as it relates
to how the business operates. The policies regarding how the business works are called the
ñbusiness rulesò of the organization.

In this section, we will consider the case of Glenside Bank. Glenside Bank is a fictitious, local
bank with just a few branches. Glenside would like to improve the way the bank stores
information about customers and their accounts. The bank functions like this.

1. The bank has customers and it collects basic demographic information for each customer
such as name, address, social security number, gender, date of birth, phone number.

2. The bank offers a number of accounts such as a checking account, savings account,
money market account, CD, etc.

3. The bank has a number of branches. The bank needs to track where each account was
opened.

4. A customer can have many accounts (you could have a checking and a savings
account). For each account, the bank needs to track the type of the account (i.e.
checking, savings, money market) and the date the account was opened.

5. An account can have multiple customers associated with it (a husband and wife could
have a joint checking account). The bank needs to track the customers associated with
each account and the date that customer was added to the account. If the customer was
removed from the account, the bank needs to track the date this occurred.

6. Every time the customer interacts with one of the accounts it is considered a transaction.
The bank needs to track a number of aspects of the transaction including the type (i.e.
withdrawal, transfer, deposit), the amount, the date and time, the customer, and the
location (ATM, check, branch, electronic fund transfer)

These business rules will be the basis for a new database which weôll call the Account database.

III. Components of an ERD

An ERD has two main components: Entities and Relationships

A. Entity:

An entity is something about which the organization wants to collect data. We typically think
of an entity as a noun (person, place, or thing). For instance, in the Glenside bank scenario,
you would need to keep information about a number of people, places, and things like the
customer, branch, bank account, respectively. Most people find it useful to think of an entity
as table which holds rows. Each row is one row in the table or one occurrence of the entity.

1. An entity (table) is a two-dimensional structure with rows and columns

2. Column:

a. The column in a table represents a piece of information called an attribute.
Sometimes an attribute will be called a field, data element, or parameter. Weôll learn
more about attributes later including what the columns marked PK and Null mean.

Database Design and Entity Relationship Diagrams

5 | P a g e C J M a r s e l i s

For now, letôs focus on the first column in the table below contains some of the
attributes in the customer table.

b. Column values (the information stored in an attribute) all must have the same data
format (data type). Weôll learn more about data types in the Access and SQL
tutorials later in this book. As you can see above, all of the customer_id values
must be of a number data type while all of the customer_lname values must be a
varchar2.

c. An attribute has a range of values called the attribute domain. This indicates the
range of acceptable values for that attribute. For instance, we could say that the
domain for zip is 00001 ï 99999 if there are no zip codes issued after 99999 and no
negative zip codes are issued. For date of birth (DOB), you may decide to make the
domain 1/1/1900 ï todayôs date. This would indicate that there are no customers
born on or before 12/31/1899 and the youngest bank customer was born today
(such as when a savings account is opened as a present for a newborn).

3. Row:

a. An entity holds rows. Each row is one instance of an entity. As you can see below,
a row holds the values for each attribute for that instance. Our first customer, Frank
Sinatra, has an customer_id of 10000. He lives at 144 Woodstream Blvd in
Hoboken, is male, and was born on 1/11/1943, etc.

b. Each piece of information in an attribute in the row holds the specific value for that
field for that row.

4. Row/Column Intersection:

a. The intersection of a row and a column represents a single value for that attribute
for that row.

5. Other aspects of entities:

a. Entity names:

b. An entity must have a unique name in a database. Letôs say that Glenside likes to
track the different kinds of customers including personal customers and business
customers. We could not have two tables in the Account database called customer.
However, there could be a customer table in different database.

Database Design and Entity Relationship Diagrams

6 | P a g e C J M a r s e l i s

c. An entity name should be singular. Accordingly, we would have a table called
customer, not customers.

d. An entity is depicted with a box in an ERD

e. Tables must have an attribute to uniquely identify each row in the table. This
attribute is called the primary key. Weôll discuss this soon.

f. The order of the rows and columns is irrelevant to the Database Management
System (DBMS).

B. Relationship:

The relationship describes how entities are related to one another. A relationship is typically
described as a verb. In the Glenside Bank example, the customer owns many bank
accounts. The account is owned by many customers.

In an ERD, a relationship is depicted by a line that joins two (or more) entities.

There are three types of relationships: one to one, one to many, and many to many.

1. Example of a one to one relationship (abbreviated as 1:1) in Glenside Bank:

Á An account is identified by one account number.

Á An account number identified one account

2. Example of a one to many relationship (abbreviated as 1:M) in Glenside Bank:

Á An account is classified into one account type such as checking, savings, money
market

Á An account type has many accounts (i.e. there are many checking accounts at
Glenside Bank)

3. Example of a many to many relationship (abbreviated as M:N ï yes the second letter is
N) in Glenside Bank:

Á An account can be owned by many customers

Á A customer can own many accounts

C. Attributes:

Attributes are really part of an entity as weôve already discovered. Letôs think a bit more
about attributes and an important concept ï Atomicity.

Letôs consider the customer at Glenside Bank. If we want to collect information about the
customer, weôll need to know the customerôs name. You might decide to create an attribute
in the customer table called name and have the first and last name of the customer added to
this one attribute. Weôll use me as an example. Letôs say I decide to update my account and
change my last name to my husbandôs last name. I tell the bank I want to change my last
name from Marselis to Lundeen on my account from now on. Itôs much more difficult to take
my name which was stored in one attribute apart to update just the second name. Theyôd
need to retrieve my name, Cindy Joy Marselis, and try and figure out which part of it is my
first name, middle name, and last name. This isnôt too hard if my name is typically spaced
and capitalized. But what happens if I have a suffix to my name, like the third (III) or my
name was hyphenated. It would get increasingly difficult to figure out which part is which. To
alleviate this problem, we store attributes in their most atomic (smallest) parts. Accordingly,
weôll keep my first name in one attribute, last name in another attribute, etc.

Database Design and Entity Relationship Diagrams

7 | P a g e C J M a r s e l i s

For instance, we donôt store an address in just one attribute. Weôll keep the first line of the
address in one attribute, the second line (for a suite, an apartment number, etc.) in another
attribute, the city in a separate attribute, and state in yet another attribute. Some folks like to
keep the zip code as 2 attributes, one to store the 5 digit zip and another to store that 4 digit
extension.

E. F. Codd, the father of relational databases, said the following, òvalues in the domains on
which each relation is defined are required to be atomic with respect to the DBMS.ò Codd
defines an atomic value as one that "cannot be decomposed into smaller pieces by the
DBMS (excluding certain special functions)."

i

IV. ERD Styles

There are a number of styles you can use to model a database, the most common of which are
the Chen and the Crowôs Foot approaches. In addition to the Chen and the Crowôs Foot, we will
also explore the infinity model (for lack of a better name) as this is the approach used by Access,
our main modeling tool for this class. In general, it really doesnôt matter which style you use, but
your approach should be consistent within one ERD.

A. Chen Model

1. For a 1:1 relationship, a number 1 is placed on the relationship line close to the both
entity boxes

2. For a 1:M relationship, a number 1 is placed on the relationship line close to the entity
which is the one side of the relationship and a letter M is placed next to the entity which is
the many side of the relationship

3. For a M:N relationship, a letter M is placed next to one entity (doesnôt matter which one)
and a letter N is placed next to the other entity

B. Crowôs Foot Model

1. For a 1:1 relationship, a number 1 is placed on the relationship line close to the both
entity boxes

2. For a 1:M relationship, a number 1 is placed on the relationship line close to the entity
which is the one side of the relationship and a little symbol that looks like a crowôs foot

() is placed next to the entity which is the many side of the relationship

3. For a M:N relationship, a crowôs foot is placed next to both entities

C. Infinity Model

1. For a 1:1 relationship, a number 1 is placed on the relationship line close to the both
entity boxes

2. For a 1:M relationship, a number 1 is placed on the relationship line close to the entity
which is the one side of the relationship and an infinity symbol (Ð) is placed next to the
entity which is the many side of the relationship

3. For a M:N relationship, an infinity symbol is placed next to both entities

Database Design and Entity Relationship Diagrams

8 | P a g e C J M a r s e l i s

The table below illustrates how relationships are represented in the three ERD Styles.

Type Example of
Relationship

Chen Crowôs Foot Infinity

1 to 1 An account is
identified by
one account
number.

 An account
number
identified one
account

Account Account

Number
1 1

Account Account

Number
1 1

Account Account

Number
1 1

1 to
Many
(1:M)

 An account is
classified into
one account
type such as
checking,
savings,
money
market

 An account
type has
many
accounts

Account

Type
Account

1 M

Account

Type
Account

1

Account

Type
Account

1 қ

Many to
Many
(M:N)

 An account
can be
owned by
many
customers

 A customer
can own
many
accounts

Account
CustomerM N

Account
Customer

Account
Customerққ

V. Keys

A. Primary key:

A primary key is an attribute that uniquely identifies each row in a table. A primary key must satisfy
three requirements:

 Unique. Each rowôs primary key must be different. For instance, if you wanted to create a primary
key for the student table, you might select TUID since every student has a unique identifier for
Temple. It wouldnôt be wise to select the studentôs first name as there could be more than one
person with that name. Similarly, last name wouldnôt be a good idea.

 Not null. The value of the primary key cannot be blank. Why? Because its purpose is to identify
each row. If you wanted to look a student up in Owlnet, how could you do that if the primary key
(the attribute used to identify each student) was blank? So a primary key must have a value stored
in it.

 Indexed. Indexing improves the speed required to find the desired row. As described in Wikipedia
3

3
 http://www.dbmsmag.com/9605d15.html

http://www.dbmsmag.com/9605d15.html

Database Design and Entity Relationship Diagrams

9 | P a g e C J M a r s e l i s

:
The classic analogy to help you understand database indexes is the index in the
back of reference books. Sure, if you wanted to find everything in the book
about a particular subject you could start at the beginning and scan every page,
but it is much faster to look in a smaller, alphabetized subject index that directs
you to a list of pages. Then you need to scan only those pages to find
information about your chosen subject. Not everything in the book is indexed,
however, so if your subject is not mentioned in the index, you must still scan for
it. Likewise, a database index is a look-up mechanism that helps a DBMS find
the information you request faster than it could with a full scan. As with book
indexes, not everything in the database is indexed, so an occasional scan may
still be necessary.

The primary reason to build an index is to improve performance. But it is not the
only reason to build an index. The second reason has to do with enforcing
uniqueness among rows stored in a database table. Tables in a SQL database
are usually designed with a primary key; that is, a set of columns with a unique
value that identifies a row in the table. When a new row is inserted into a table
defined with a primary key, it is up to the DBMS to ensure that the primary key
value for that row is unique. Performance would be unacceptable if the DBMS
had to scan the entire table each time a new row was inserted. Therefore, the
accepted solution is to build a unique index on the primary-key columns and let
the DBMS use that as the physical enforcement mechanism for the primary key
uniqueness requirement.

1. What makes a good primary key?

Any attribute or combination of attributes that satisfy the three requirements above
(unique, not null, and indexed) can be a primary key. However, some attributes are more
appropriate to be select as the primary key than others. For instance, if all of my
students have unique first names I could make student first name as the primary key for
the student table. But that doesnôt happen very often. Each semester I have a few
students named John and a couple students named Michael. What about last name you
might ask. Again, if I could be sure it would be unique so I never have more than one
student with the last name of Patel or Smith or Jones, that would be fine. But again, that
doesnôt happen most semesters and we want our primary key to ALWAYS be unique. So
what can I do? We can start adding attributes together. For instance, instead of making
the studentôs last name the primary key, I could make a combination of first name, last
name, and date of birth. It is unlikely I would have two students who have the same
name and birthday.

While it is acceptable to have a primary key which is a text or a date type or some
combination thereof, it is easier to have a primary key that is an integer. As well learn
later, we use primary keys and foreign keys to ñjoinò tables (more about this in the SQL
tutorial) and it is easier to join two attributes that have an integer data type.

So what do you do if you donôt have an attribute for a table that is unique and not null and
an integer? No problem. Just create a new attribute and enforce those rules.

2. Composite key:

As Iôve noted, a primary key does not have to be made of just one attribute. Whenever a
primary key is composed of more than one attribute it is called a composite key. As long
as it meets the requirement to be unique not null and indexed, you can add as many

Database Design and Entity Relationship Diagrams

10 | P a g e C J M a r s e l i s

attributes together to make a composite key as you like. The only limitation is that it
becomes increasingly difficult to join tables. Weôll talk about joins later.

B. Foreign Key:

As weôve learned, redundant data leads to insert, delete, and modification anomalies.
Wherever possible, we want to avoid redundant data. By designing a database carefully, we
can do a very nice job of keeping information once and only once to ensure that if it needs to
be added, changed, or deleted, we can perform the function one time, and all of the rows in a
table that use that data will refer to the correctly inserted, updated, or deleted information.

Weôve also learned that we keep information about a particular item in a table, and a
database can be composed of a number of tables which are related to each other in some
way, all pertaining to an aspect of a business. So how do we make these tables related to
each other? Thatôs the beauty of the foreign key.

A foreign key is an attribute in a table which is repeated in another related table. Wait, didnôt
we just say we didnôt want redundant data? Yup! But, this is a form of CONTROLLED
redundancy. In other words, we donôt want to keep all kinds of duplicate data but we can
keep just one piece of information (i.e. the primary key) of one table, and repeat it as a
foreign key in another table and now we can link the tables together.

Hereôs an example. Imagine Iôm designing a database that houses information about courses
at a college. Here is just a piece of the database model. You can see there is a course table
that has a number of attributes related to a course. There is a discipline table that holds
information about the various majors (disciplines) offered, and there is a school table that
describes the schools at the university.

Letôs take a look at the data in the discipline and the school tables.

Database Design and Entity Relationship Diagrams

11 | P a g e C J M a r s e l i s

Discipline:

School

We can see that the number stored in the school attribute of the discipline table matches to
the school_id value in the school table. Now letôs consider row 10 in the discipline table. The
school associated with SOC is 4 ï or SCT-School of Communications and Theater. What
would happen if there was a big reorganization at the university and all of the disciplines that
were at Fox were transferred to SCT? Weôd need to type SCT- School of Communications
and Theater 6 times. Thatôs a lot of typing! What if we mistyped it on a few occasions? Can
you see how easy it would be to have errors in the data whenever there is an addition,
modification or deletion of a value? But if you just use a foreign key (school) in the discipline
table to the school_id (primary key) of the school table, all you need to do is add, update or
delete the value of 1 row. Isnôt that much easier? Sure! Thatôs the beauty of foreign keys!

Weôll discuss foreign keys in more detail in just a bit.

VI. Integrity Rules

There are two essential integrity rules that we follow when building ERDs

A. Entity Integrity:

Entity integrity is imposed on a database to ensure that each tableôs primary key is unique
and not null. Consider the following customer table which has Customer ID as the primary
key:

Database Design and Entity Relationship Diagrams

12 | P a g e C J M a r s e l i s

Do you think I can enter the following 3 rows into the database?

8

Cindy Marselis 1810
N. 13

th

St

Phila PA 19122 215.204.3077

 Munir Mandviwalla 1810
N. 13

th

St

Phila PA 19122 215.204.8172

9 Bob Smith 8248
Walnut
Ave.

Trenton NJ 080205 856.777.7777

1. If I try and enter the first row , Iôd would violate entity integrity. Entity integrity ensures the

primary key cannot be null and must be unique. Since a row already has a primary key
of 8, the first row cannot be added. It doesnôt matter that the data in the row is different
since entity integrity is concerned with the primary key and this is a duplicate.

2. The second row has a null primary key, so this also should not be added

3. What about the third row? This has the same data as customerID 8. Would this be
excluded as well? No. Entity integrity ensures that the primary key is not duplicated or
null. Since there are no rows with a primary key of 9 and the field is populated (not null) it
does not violate entity integrity. Also, isnôt it possible that there are two Bob Smiths
(perhaps Bob Senior and Bob Junior) who live in the same house? It could be that this is
duplicated data and that is not desirable but it also is possible that there are indeed two
people with the same name and address in the database. There are methods that
organizations use to try to determine if rows such as these are duplicates but that
discussion is outside of the scope of this class.

B. Referential Integrity

Referential integrity ensures that a foreign key matches to a primary key. Letôs look at the
following example. As we saw earlier, each discipline is in a school within Temple. Now letôs
say I add a new discipline for Dentistry into the discipline table, and I want this to be added to
school 7. The database will not allow this row to be stored since the foreign key (7) does not
have a matching primary key in its parent table School.

Note, a primary key may match a foreign key or a null value. For example, you see that SCT
in the School Table (School_ID 4) does not have any corresponding rows in its child table
Discipline. That is acceptable. Think of it like this. A school can be created and then its
children (disciplines) will be added to it but a child cannot be added to a non-existent parent.
So a discipline cannot be added if it doesnôt have a school to go to. A row with a primary key
of 7 must be created first in the school table first before it can be referenced by a child row in
another table.

So the rules are:

 A foreign key must match to a primary key

 A primary key must match to a foreign key or a null value

Database Design and Entity Relationship Diagrams

13 | P a g e C J M a r s e l i s

Discipline Table

School Table

VII. Relationship Rules

Now that we understand a bit about integrity rules, letôs explore the rules related to relationships.
Relationships must be defined into one of three types (1:1, 1:M, M:N). Once it is defined, the
relationship must be resolved (converted into a format that can be stored in a database). Hereôs
how we handle the relationship type and resolution. We will see examples of this in Chapter 3
but for now, just try and digest the concepts.

A. Determine relationship using this terminology: (i.e. relationship between student and dorm
rooms)

 1 of A is related to X (1 or many) of B
i.e. 1 student is assigned to 1 dorm room

 1 of B is related to X (1 or many) of A
 i.e. 1 dorm room is assigned to many students

The decision will be as follows:

1. 1:1

a. 1 of A is related to 1 of B

b. 1 of B is related to 1 of A

2. 1:M

a. 1 of A is related to many of B

b. 1 of B is related to 1 of A

3. M:N

a. 1 of A is related to many of B

b. 1 of B is related to many of A

Database Design and Entity Relationship Diagrams

14 | P a g e C J M a r s e l i s

B. Resolve the relationship

1. If the relationship is a 1:1, it is assumed that the entity is just another attribute for that
table. Add it as another attribute to an existing entity.

a. For instance, if you have TUID and student, a student can have only one TUID and
a TUID is assigned to one student. Include the TUID as an attribute to the student
table.

2. If the relationship is a 1:M, the primary key of the one side is duplicated as the foreign

key on the many side. The rule is that the foreign key ALWAYS goes on the many side.

a. The names of the primary key and the foreign key do not need to match. Only the
data type needs to be the same.

b. Of course, the values of the data stored in the field must match as well or there
cannot be a join.

3. If the relationship is a M:N, resolve the M:N relationship into two 1:M relationships. To
resolve the M:N relationship into two 1:M relationships:

a. Create a new table which is an associative entity (AKA composite entity or bridge
entity). The purpose of the associative entity is to function as a bridge between the
two entities. This table must include the primary keys of the two entities as foreign
keys. This makes sense since the associative entity is now the many side of both
1:M relationships. Since the foreign key ALWAYS goes on the many side of a
relationship and the associative entity is ALWAYS the many side of the relationship,
both of the foreign keys would be placed in the associative entity.

b. If the combination of the 2 foreign keys is unique, it can be used as the primary key
of the associative entity. Since the primary key will be composed of 2 primary keys,
it is called a composite key.

c. If the combination of the 2 foreign keys is not unique, leave the 2 foreign keys in the
associative entity and create a new primary key for the associative entity.

Database Design and Entity Relationship Diagrams

15 | P a g e C J M a r s e l i s

Chapter 3: Example of Creating an ERD

Weôll start off with a small example. Letôs design a database for Glenside Bank. Weôll consider each of
the business rules step by step. Weôll also explore some database design concepts as we go.

I. 1:1 Relationships

The bank has customers and it collects basic demographic information such as name, address,
social security number, gender, date of birth, phone number, for each customer. Customer
seems a good candidate for an entity as it is a noun and we are collecting information about that
customer. So letôs create a bank customer table. There can be no spaces in between the words
in attributes or tables names, so the name of this table will be bank_customer.

Letôs consider what information (attributes) weôll keep about our customers.

A. Our first step is to identify a good primary key for our table. You might be tempted to use a
personôs social security number, but a social security number isnôt always unique since at one
point duplicate numbers were issued. Also, in the past, not everyone was issued an SS#, so
the value can be null. This violates 2 of the 3 rules about a primary key. We woulc also
consider some combination of the customerôs first name, last name, and date of birth as the
primary key but this might get a bit cumbersome. To make it easier for ourselves later, letôs
just create a new attribute called Customer_ID

B. Now weôll consider social security number, date of birth, phone number and name. The
social security number is unique to one customer (hopefully) and a customer should have
only one social security number (again hopefully). This is clearly a 1:1 relationship. If we
review our relationship rules, if a relationship is 1:1, it is assumed that the entity is just an
attribute for that table. Add it as an attribute to the bank_customer entity.

C. Derived (calculated) field:

1. What about date of birth? A customer can only have one birth date, right? But it is
possible for more than one customer to have the same birthday. Is this a 1:M
relationship? You could say that, but this type of data is virtually always handled as a 1:1
relationship so weôll just add date of birth to the bank_customer table.

2. Why am I collecting the date of birth rather than the customerôs age. Unfortunately, we
are all getting older every nano second, and your current age will not be the same at this
moment as it will be a second, month, or year from now. However, you date of birth
stays the same. We can always calculate (derive) your age by taking the current date
and subtracting your birth date so it is better to keep your birthdate. Storing the birthdate
has another advantage over storing age. What if we want to send a birthday message to
anyone whose birthday is in July. If I store age I wonôt be able to do this but if I store
birthday, thatôs an easy calculation.

3. Youôll find there are numerous times where youôll be tempted to store a derived field
(subtotals, totals, calculations, etc.) but it is always preferable to store the raw attribute
and do the math as a calculation. In the SQL section of this book youôll learn how to
handle calculations.

D. What about address? Address is like the date of birth in that there could be multiple
customers with the exact same address (such as spouses or parents and children) but it is
common to keep this information within the customer table. Remember with address we
want to keep the attribute atomic, so weôll keep address 1, city, state, and zip as separate
attributes.

E. Weôll handle phone number the same way as address and keep the phone in the
bank_customer table. Although it is true the customer can have lots of phone numbers, from

Database Design and Entity Relationship Diagrams

16 | P a g e C J M a r s e l i s

the bankôs perspective, it really only needs one. Weôll just have one telephone number per
customer.

F. We also want to keep personal information such as the personôs gender. Try to avoid calling
this attribute sex as that has a number of different connotations. Rather, weôll name this
attribute gender.

G. Of note, you can add attributes to a table in any order you wish but makes more sense to
group the attributes into similar areas and in a logical order. As such, we put the components
of the address lumped together and place the attributes in the same order as a typical mailing
address.

H. There could be lots of other pieces of information weôd like to keep about the customer but
letôs go with this. Our customer table now appears as follows with customer_id as the
primary key (delineated by the key symbol to the left of the attribute name):

II. 1:M Relationships

The next two business rules coincide with one another so Iôm going to consider them together.
The bank offers a number of accounts such as a checking account, savings account, money
market account, CD, etc. The bank has a number of branches. The bank needs to track where
each account was opened.

Looks like we need an account table. What type of information will we need in our account table?
Certainly weôll need a primary key to uniquely identify each account in the account table.
Account_Number seems like a good one since it is unique and shouldnôt be null. We also need to
store the state where the account was opened. In addition, we need to track the type of the
account (checking, savings, money market, CD, etc.), the branch where the account was opened,
and the billing cycle date (thatôs the day of the month when you get your statement like the 15

th
 of

the month so the value is 15). Letôs start with this list of attributes:

 Account_number

 State_opened

 Account_type

 Branch_opened

 Billing_cycle_day

We could add an attribute for account type with a data type of varchar2 (text). In this situation,
the user would need to type in the word ñcheckingò, ñsavingsò, ñmoney marketò, etc. each time a
new row was added to the account table. But thatôs quite a bit of typing! Also, what happens

Database Design and Entity Relationship Diagrams

17 | P a g e C J M a r s e l i s

when someone types Checking and someone else types checking, and a third person types
check? If I want to see all of the checking account customers, Iôll only see a subset of them.
Why? To a computer upper case is different than lower case. To make it easier for the user to
enter information and to ensure information is entered in a consistent manner to facilitate data
retrieval it would be better to give the user a drop down box which has a list of the acceptable
values for that field. The user then just has to click on one and the value will be filled into the
field. Itôs like when you order something on the web. You donôt type your state in to the state
field when you enter your address. You typically see a drop down list and you click on your state.

A. When to use a look up table?

It is wise to consider a lookup table when the possible values of the attribute are not limitless.
Therefore, we donôt usually give a lookup table for birthdates, street addresses, first names or
last names. However, you will typically see them for products and anything where the item is
categorized or grouped into a particular type like country, region or ethnicity, student class
type, etc.

B. What does a lookup table include?

A lookup table can include any attribute, but most commonly it will include 2 fields, the
primary key and a description. For instance, when you pick your state when ordering
something online, the state lookup table typically has a primary key which is the 2 letter state
abbreviation and the stateôs full name.

Here is the structure of the state table as well as a subset of some of the values stored in the
table.

C. Building a relationship with a look up table.

A lookup table is really just an example of a 1:M relationship.

 A customer lives in one state.

 A state includes many customers.

 State is the 1 side of the relationship)

 Bank_customer is the many side of the relationship

As the relationship rules tell us, in a 1:M relationship, the primary key of the one side is
duplicated as the foreign key on the many side. Remember the rule is that the foreign key
ALWAYS goes on the Many side. The names of the primary key and the foreign key do not
need to match ï only the data type needs to be the same.

To make the relationship, weôll take the primary key of the 1 side (state) and make it a foreign
key in the many side of the relationship (bank_customer). This means weôll take stateid from
the state table and add this attribute to the bank_customer table. We donôt have to call it
stateid and in fact, Iôve just called it state. Now our relationship appears as follows:

Database Design and Entity Relationship Diagrams

18 | P a g e C J M a r s e l i s

When user is entering information into the bank_customer table, he will select a value from
the state table. The primary key (stateid) of the state table will be duplicated in the
bank_customer table as a foreign key (state).

D. Additional examples of lookup tables related to the account table.

1. Account type: Weôve seen we need to track the account type. Hereôs an example of
what the account type would look like in the structure as well as the values:

Just like before, this is a 1:M relationship. An account is of one type. An account type
includes many accounts. Weôll take the primary key (account_type_id) of the one side
(account type table) and make it a foreign key (account_type) on the many side of the
relationship (account table).

Hereôs what the structure looks like:

Database Design and Entity Relationship Diagrams

19 | P a g e C J M a r s e l i s

Hereôs what the corresponding data looks like:

You can see here that account_number 98746234 has an account_type of 4 so it must
be a CD.

2. Branch: Youôll note we need to store the branch where the account was opened. The
Account was opened at one branch. A branch had many accounts opened at its location.

For branch, we need to keep additional pieces of information other than just the primary
key (Iôll call this branch_id) and description (branch_name). We also need to keep the
branchôs address as well as the date the branch was opened. Its design will look like
this:

The data stored in the table will look like this:

Now branch_state can use same state lookup table that is linked to the bank_customer
table. Similarly, state_opened attribute in the account table can use the stateid in the

Database Design and Entity Relationship Diagrams

20 | P a g e C J M a r s e l i s

state table as a lookup table. If we look at our relationships at this point, if we look at our
database design at this point, it will look like the following:

III. M:N Relationship

We know from our business rules that a customer can have many accounts (i.e. a checking and a
savings account) and an account can be associated with multiple customers (a husband and wife
could have a joint checking account). The bank needs to track the customers associated with
each account and the date that customer was added to the account. If the customer was
removed from the account, the bank needs to track the date this occurred.

A. Resolving M:N Relationships

Clearly, we have a many to many relationship here between bank_customer and accounts.
Upon review of our relationship rules:

 If you have a M:N relationship, you need to resolve it into two 1:M relationships. To do
this, create an associative entity (AKA composite entity or bridge entity) which has the
primary keys of the two entities as foreign keys.

Here are our two entities:

Database Design and Entity Relationship Diagrams

21 | P a g e C J M a r s e l i s

1. We need to make a new table which has the primary keys of the bank_customer table
(customer_id) and the account table (account_number) as foreign keys to the new table.
In addition to the foreign keys from the account and the bank_customer table, we need to
add an attribute to collect the date this account was opened. Letôs call this new table
account_assignment. It will look like this:

2. Since the foreign key ALWAYS goes on the many side of a relationship and the
associative entity is ALWAYS the many side of the relationship, the foreign key for both
of the original entities must go on the associative entity.

B. Composite key:

1. Bank_account_id is the foreign key to the customer_id primary key in the bank_customer
table. Customer_id is the foreign key to the account_number primary key in the account
table. Bank_account_id and Bank_customer_id are a composite primary key in the
account_assignment table. Remember a composite key is a primary key made up of
more than one attributes.

2. If the combination of these attributes is unique, the combination of the foreign keys is the
primary key of the associative entity. In this case, can a customer open the same
account on a day? No ï then it is unique. Therefore, the primary key can be the
composite key of bank_account_id and bank_customer_id.

Here is the resolved M:N relationship:

Database Design and Entity Relationship Diagrams

22 | P a g e C J M a r s e l i s

3. Letôs take a look at the data for these tables:

Bank_Customer

Account_Assignment

Account

This is showing that the first row in the account_assignment table is for customer 10100.
If we look at the bank_customer table we can see that this number corresponds with
Dean Martin. He has an account which was opened at branch 10100 on 1/3/2007 in PA.

If we look at the next row, which is also for Dean Martin, we can see he also opened an
account with the number of 20978983 in PA on 12/19/2006. This account is jointly
owned by customer 10300 ï Amanda Mobley.

IV. Final ERD

When we put all of the entities and their appropriate relationships together into one diagram, we
develop the following ERD model of our database. Note that all of the relationships are now 1:M
since all of the M:N relationships have been resolved into 1:M relationships.

Database Design and Entity Relationship Diagrams

23 | P a g e C J M a r s e l i s

V. Placements of attributes in tables

One area where new database designers can get confused is the placement of attributes in
tables. In this scenario youôll notice I added an attribute, date_opened, into the
account_assignment table. You may wonder why I put the attribute in that table.

A. When you are considering attributes you need to come back to the definition of a primary key.
A primary keyôs purpose is to uniquely identify every row in a table and to allow the user to
retrieve the values of all the attributes in that row. If I put the date_opened field in the
bank_customer table, it would mean that the value of the date_opened field (i.e. what date
the account was opened) is determined solely by the customer. Since a customer can have
more than one account and each could be opened on different dates the value of
date_opened is determined by more than the customer.

1. What if we put the date_opened attribute in the account table? This makes sense except
that multiple customers can be on one account. For instance, a husband and wife can
open an account, and both go and sign the paperwork on different days. In this situation,
the date that the customer opened the account would be different for both customers.
Therefore, date opened is not solely determined by the account.

2. Clearly, date_opened is determined by both the customer AND the account, and
therefore it must be placed in the associative entity, the account_assignment table.

B. Most of the time people run into problems with the placement of attributes when working with
a M:N relationship. If you find yourself confused, just consider each table independently and
decide if the value of the attribute is determined by only one side of the relationship. If it is
determined by both sides of the relationship, place the attribute in the bridge entity.

Database Design and Entity Relationship Diagrams

24 | P a g e C J M a r s e l i s

Chapter 4: Invoice Example

Now that weôve seen a full ERD example, weôll go one step farther. Organizations typically exist to make
and or provide a product or a service for a customer or client. As such, companies typically need to make
an invoice or a receipt which is given to the customer for payment. Since the requirement to create an
invoice is basically universal in all organizations, letôs explore how to handle this through a database.

In a new scenario, what if you order books online from a publisher for next semester. When you receive
the book in the mail, it will have an invoice that looks something like this:

Customer:

Bruce Springsteen
1818 Rock and Roll Way
Rumsford, NJ 08045

Invoice # 3211

Order Date: 6/3/2008

Order Clerk: 144444

Ship Date: 6/5/2008

Shipped From:

Publisherôs R Us
8181 Education Way
Smartsville, PA 19888

 Line Items
ISBN Item Description Product

Type
Unit Price Quantity Subtotal

141414 Databases R Amazing IS 100.00 3 300.00
333333 The History of Rock and

Roll
Music 200.00 1 200.00

455050 How to Make a Lot of
Money

Finance 500.00 1 500.00

 TOTAL 1,000.00
 Tax 60.00
 Grand Total 1,060.00

I. Entities and Attributes:

Letôs decompose each piece of the order. Invoices typically include 4 main pieces which
correspond to the sections of the invoice above:

 Customer

 Shipper

 Invoice Information

 Items purchased

A. Customer Information

1. When you place an order, the company needs to know basic information about you. This
might include your full name, home address, credit card information (number, type of
card, expiration date, etc.) and your shipping information. Of course, the company
needs to uniquely identify each customer, so it will typically issue a customer identifier.

2. Not all invoices will have customer information. For instance, imagine you go to 7-Eleven
and buy some munchies for lunch. On the receipt you receive it will not include customer
information since you donôt typically give any data about yourself when you shop at a
store. But what about if you shop at a place that uses a frequent shopper card like a

Database Design and Entity Relationship Diagrams

25 | P a g e C J M a r s e l i s

super market? In that case, your customer information will probably show up on the
receipt. The presence of customer information will be driven by the needs of the
organization.

B. Seller Information:

An invoice typically includes basic information about the store from which you purchased the
item. If it is a purchase at 7-Eleven, it might just say 7-Eleven and show the store number
and address. Again, the amount of the information displayed will be driven by the needs of
the organization.

C. Product Information

An invoice or receipt will normally show the products that were purchased. Typically it will
include the product identifier (such as a SKU or an ISBN), a description about the product,
and perhaps some information as to the type of the product.

1. In the invoice above you see information such as subtotal, total, and tax. All of these are
derived or calculated fields as described earlier. These attributes would not be stored in
the database, but rather would appear on a report based on a calculation you perform.

2. For product type, we probably want a lookup table since we donôt want the user to enter
free text. Rather, weôd like to have the user pick the value from a list to ensure there is
consistency in the information collected and to minimize data entry. As youôll recall, when
we add a lookup table it is simply a 1:M relationship. A product is of one type, and a type
has many products associated with it.

D. Invoice Information

Virtually all receipts and invoices have some basic identifying information about the purchase
which includes an invoice or receipt number, perhaps a barcode, an invoice date and time,
and possibly the name of the person who placed the order. If the item was shipped it might
include the shipping date. At a store it might include the cashierôs identifying number. All of
this type of information will be housed in a table that you might call invoice, receipt, or order.

II. Relationships:

Now that weôve identified the basic entities, weôll move on to determining their relationships.

A. Customer to Invoice

An invoice is issued for one customer. A customer can purchase items or services from an
organization on multiple occasions and each purchase is tracked through an invoice.
Therefore, a customer can have many invoices but an invoice is for only 1 customer. The
relationship between customer and invoice is 1 to many, with invoice as the many side of the
relationship.

B. Seller to Invoice

An invoice is created by one seller. A seller creates many invoices (or they wouldnôt stay in
business too long). The relationship between a seller and an invoice is also 1 to many,
respectively.

Database Design and Entity Relationship Diagrams

26 | P a g e C J M a r s e l i s

C. Product to Invoice

When we buy something at a store or online we can purchase more than one item during the
visit or transaction. It would be cumbersome and very time consuming if the store had to
create a different invoice for each item purchased so the store adds all the products
purchased during that one transaction on one invoice. For instance, in the example above,
Bruce Springsteen bought three books and all appear on one invoice.

Now Bruce Springsteen is not the only person who might purchase a copy of Databases R
Amazing or The History of Rock and Roll. Therefore, a product can be on multiple invoices.
Accordingly, the relationship between product and invoice is M:N.

1. Be careful when thinking through these relationships. You might have thought that only
one person could buy a book. It is true that an individual copy of a book could only be
purchased by one person but what we are tracking in this database is a product, not an
instance of a product. In other words, the bookstore has a bunch of copies of Databases
R Amazing, It doesnôt track each individual copy of the book. Rather, it only knows
there were X number of copies of the book. With RFID (radio frequency ID) you can in
fact track each individual instance of an item. However, most stores still work on bar
coding which just tracks a product and the number in stock.

2. Now that we know that the relationship between product and invoice is M:N, we need to
review our relationship rules. As youôll recall, if you have many to many relationships,
you must resolve it into 2 one to many relationships. We resolve it by creating a new
entity called a bridge or associative entity (it bridges or associates the two entities).

a. The bridge entity must include the primary keys of the two tables as foreign keys.

b. If the combination of these attributes is unique, the combination of the foreign keys
can be used as the primary key of the bridge entity. If you use the 2 foreign keys as
a primary key, the primary key is a composite key as it is composed of more than
one attribute.

c. If the combination of the foreign keys is not unique, then you need to create a new
attribute to be the primary key.

3. In industry, the bridge entity between the invoice and the product table is typically called
the invoice detail table. That is because it shows the line items (details) on the invoice.

III. ERD

Below is an example of what the basic entity relationship diagram for an invoice database would
look like. As youôll note, it typically includes tables pertaining to the

 Product

 Customer

 Seller

 Transaction (the invoice, receipt, or order table)

 Order details (the bridge/associative entity between invoice and product showing the
invoice detail).

Youôll have a number of other tables as required by the specific needs of an organization but this
is the basic design of invoicing systems.

Database Design and Entity Relationship Diagrams

27 | P a g e C J M a r s e l i s

IV. Variations on a theme

Based on the business, some of these basic tables would be called different things. For example,
if you were creating a system for the Bursarôs office at Temple, the customer would be called
Student. The Product would be Course. You would probably delete the Seller table since all of
the services (courses) are provided from one ñstoreò (Temple). The Invoice Detail table will not
include quantity ordered or shipped since we donôt ship courses or take multiple sections of the
same class.

If the business was a doctorôs office, the Product might be service (i.e. chest x-ray, physical
exam, vaccination), the Customer would be called Patient, and the Seller might be Clinic since
one doctor could practice in multiple locations. The Invoice table might be called Patient Bill and
the Invoice_Detail table will not include quantity shipped or ordered.

Clearly, additional tables and attributes could be added to collect more information based on the
organizationôs needs. But in general, this invoicing structure is fairly stable across all types of
firms.

Database Design and Entity Relationship Diagrams

28 | P a g e C J M a r s e l i s

Chapter 5: Data Dictionary

I. What is a data dictionary?

Weôve spent some time discussing ERDs and while the design is critical to the functionality of the
database, the data dictionary is essential as well. The data dictionary is just what the name
implies ï a dictionary about the data housed in the database. The data dictionary holds
metadata, or data about the data. Hmpf, was that confusing?

Let me give you an example. Iôm a new database developer at Glenside Bank. The manager
comes to me and asks me to write a report of all of the accounts opened in Abington in the prior
month. That seems easy enough. But, when I write the report I return no rows. Upon closer
inspection of the data, I realize that Glenside stores dates in military format (i.e. MMM-DD-YYYY
such as JUN-17-2008) and I had written the query assuming the date was stored as
MM/DD/YYYY (such as 06/17/2008). How would I know the format of the attributes ï just look it
up in the data dictionary!

A. Although there is no standard for what should be contained in the metadata, you might find
the following information for each table in the database. Some of these items will be
explained more fully in the Access and SQL Tutorials.

 Table description (explaining the basic kind of information stored in the table)

 If the table comes from an outside source, it may include the format in which the table was
received, the date of receipt, the date it was loaded into the database, and when an
update may be expected.

 Attribute name, field size, data type, whether it is a primary key, and if it is required
(cannot be left null), formats for the value, levels of precision, and input masks

 Information relating to relationships such as whether an attribute is a foreign key. If so,
what table it references.

This is an example of a piece of a data dictionary:

B. Many database management systems are considered to be self-describing. In other words,
they document the information which is stored in the data dictionary automatically when
tables and attributes are added to the database. It is simply a matter of querying the data to
retrieve the information.

C. A data dictionary can also be used to create an ERD of a database if one has not been
provided. Since the metadata typically shows which attribute is a primary key, which
attributes are foreign keys and the table referenced, you could take a dictionary and recreate
the ERD.

Access 2007 Tutorial

29 | P a g e C J M a r s e l i s

Section 2: Access Tutorial

Chapter 6: Introduction

I. Access 2007 Interface

A. The Ribbon

Microsoft Access 2007 offers a new user interface that includes a standard area called the
Ribbon, which contains groups of commands that are organized by feature and functionality.
The Ribbon replaces the layers of menus and toolbars found in earlier versions of Access.

Use the Ribbon to locate groups of related commands faster. For example, if you need to
create a form or report, use one of the commands on the Create tab. Commands are placed
closer to the surface, which means that you do not need to dig for them in menus or
memorize their locations.

B. Navigation Pane

The Navigation Pane lists and provides easy access to all of the objects in the currently open
database. Use the Navigation Pane to organize your objects by object type, date created,
date modified, related table (based on object dependencies), or in custom groups that you
create. You can easily collapse the Navigation Pane so that it takes up little space, but still
remains available. The Navigation Pane replaces the Database window that was used in
versions of Access earlier than Access 2007.

Access 2007 Tutorial

30 | P a g e C J M a r s e l i s

Chapter 7: Tables

I. Introduction to Tables

Tables are grids that store information in a database similar to the way an Excel worksheet
stores information in a workbook. Access provides three ways to create a table for which
there are icons in the Database Window. Double-click on the icons to create a table. For our
purposes, we will create a table in design view.

A. Create a Table in Design View Design View allows you to define the fields in the table before

adding any data to the datasheet. The window is divided into two parts: a top pane for
entering the field name, data type, and an optional description of the field, and a bottom pane
for specifying field properties.

B. Field Properties

Field Name

This is the name of the field and should represent the contents of the field such as "FirstName",
"Address", "Final Grade", etc. The name cannot exceed 64 characters in length and may include
spaces.

Access has a few ñwordsò that are considered reserved field names including the word ñNameò.
If you try and add an attribute with a reserved field name, Access will not allow you to save the
attribute. If you run into this situation, simply enter a different name for that attribute.

Access 2007 Tutorial

31 | P a g e C J M a r s e l i s

Data Type The type of value that will be entered into the fields. Below are some of the data types available
in Access

Data Type Description

Text The default type, text type allows any combination of letters and
numbers up to a maximum of 255 characters per field row

Memo A text type that stores up to 64,000 characters.

Number Any number can be stored.

Date/Time A date, time, or combination of both

Currency Monetary values that can be set up to automatically include a dollar
sign ($) and correct decimal and comma positions.

AutoNumber When a new row is created, Access will automatically assign a unique
integer to the row in this field. From the General options, select
Increment if the numbers should be assigned in order or random if any
random number should be chosen. Since every row in a datasheet
must include at least one field that distinguishes it from all others, this
is a useful data type to use if the existing data will not produce such
values.

Yes/No Use this option for True/False, Yes/No, On/Off, or other values that
must be only one of two possible values

OLE Object An OLE (Object Linking and Embedding) object is a sound, picture, or
other object such as a Word document or Excel spreadsheet that is
created in another program. Use this data type to embed an OLE
object or link to the object in the database.

Hyperlink A hyperlink will link to an Internet or Intranet site, or another location in
the database. The data consists of up to four parts each separated by
the pound sign (#): DisplayText#Address#SubAddress#ScreenTip.
The Address is the only required part of the string. Examples:

 Internet hyperlink example: FGCU Home Page
#http://www.fgcu.com#

 Database link example: C:\My
Documents\database.mdb#mytable

LookupWizard The LookupWizard isnôt really a data type but Access provides you an
easy way to allow you to create foreign keys to lookup tables. Make
sure you review the section on lookup tables in the ERD section of this
book to gain a better understanding of what lookup tables offer.

The lookup wizard can read values from 2 main sources. You can tell
the wizard to look up the values from an existing table or query OR
you can type the acceptable values into a list that is stored with the
field. In general, it is preferable to look the values up from a table
since the user can just update that table whenever a new value needs
to be added or a value needs to be changed. While the same is true if
the value is typed in a list, this approach is more cumbersome and
difficult to maintain.

You will need to have the lookup table created first.

As an example, letôs say I have an address table and I want the user
to be able to pick a state from a lookup table (as you typically would if
you were completing a form online). For our example, the table is
called State and its structure looks as follows:

http://www.fgcu.com/

Access 2007 Tutorial

32 | P a g e C J M a r s e l i s

Hereôs a few rows stored in the table:

To use the lookup wizard

1. Select LookupWizard from the data type drop down box

2. Select ñI want the lookup column to look up the values in a table
or queryò in the first screen of the wizard.

3. In the next screen, select the table which is the lookup table. In
our case, you would select Table: State from the list of tables in
the database.

4. In the next screen, select the values to appear in the lookup
column. In this scenario, we would probably want to select both
the abbreviation as well as the description. This will help in case
the user isnôt entirely sure what is the 2 letter abbreviation for
desired state (particularly useful with all those I states like Idaho,
Indiana, Illinois, etc.)

5. In the following screen, you will be asked how you want the
lookup values to be sorted. Typically youôll want it in alphabetic
or numeric order. You get to select whether the order should be
ascending or descending. In this case, weôll ask for it be sorted
by the 2 letter abbreviation in ascending order.

6. In the next screen you can modify the appearance of the lookup
columns. Note that there is a checkbox which indicates that the
primary key will be hidden. This option is useful since many
times the primary key doesnôt provide meaningful information to
the user. For instance, if the lookup table was something like a
product table, it would be difficult to remember all the different
product identifiers so it would be better to show the product
description. In our case, the 2 letter abbreviation is useful so
weôll uncheck the box.

7. In the last screen, you get to give the column a name. Weôll use
state. Then click Finish.

8. Now whenever the user wants to enter a row and the user gets to
the field with the data type of lookup, a drop down list will appear
with the values in the lookup table in the selected order. The
user will just need to click on the proper value and the value will
be populated (stored) in that field.

Access 2007 Tutorial

33 | P a g e C J M a r s e l i s

Description (optional) ï Allows user to enter a brief description of the contents of the field

Field
Properties-

Select any pertinent properties for the field from the bottom pane of the Design View window.
See Field Properties Table below.

Field Properties:

Field Size Used to set the number of characters needed in a text or number field. The default field size for
the text type is 50 or 255 characters based on how your application was configured. If the rows
in the field will only have two or three characters, you can change the size of the field to save
disk space or prevent data entry errors by limiting the number of characters allowed. Likewise, if
the field will require more than 50 characters, enter a number up to 255. The field size is set in
exact characters for Text type. The following are the options available for number type fields.

 Size Description

Byte Positive integers between 1 and 255

Integer Positive and negative integers between -
32,768 and 32,768

Long Integer
(default)

Larger positive and negative integers between
-2 billion and 2 billion.

Single Single-precision floating-point number

Double Double-precision floating-point number

Decimal Allows for Precision and Scale property
control

Format Ensures the data entered into a field is consistent for each row entered. For text and memo
fields, this property has two parts that are separated by a semicolon. The first part of the
property is used to apply to the field and the second applies to empty fields.

Some formats are pre-established and the user does not need further specification. For
instance, in the currency format, there is a standard currency option. However, the user has the
capability to change that standard to further customize the output. Examples are provided below
to demonstrate how customization can be achieved.

Text and memo format.

Text Format

Format Datasheet
Entry

Display Explanation

@@@-@@@@ 1234567 123-4567 @ indicates a required
character or space

@@@-@@@& 123456 123-456 & indicates an optional
character or space

< HELLO hello < converts characters to lowercase

> Hello HELLO > converts characters to uppercase

@\! Hello Hello! \ adds characters to the end

 Number format. Select one of the preset options from the drop down menu or construct a
custom format using symbols explained:

Access 2007 Tutorial

34 | P a g e C J M a r s e l i s

Field Properties:

Number Format

Format Datasheet Entry Display Explanation

###,##0.00 123456.78 123,456.78 0 is a placeholder that displays a digit or 0
if there is none.

$###,##0.00 0 $0.00 # is a placeholder that displays a digit or
nothing if there is none.

###.00% .123 12.3% % multiplies the number by 100 and
added a percent sign

 Currency format: This formatting consists of four parts separated by semicolons: format for
positive numbers; format for negative numbers; format for zero values; format for Null values.

Currency Format

Format Explanation

$##0.00;($##0.00)[Red];$0.00;"none" Positive values will be normal currency format,
negative numbers will be red in parentheses,
zero is entered for zero values, and "none" will
be written for Null values.

 Date format. In the table below, the value "1/1/01" is entered into the datasheet, and the
following values are displayed as a result of the different assigned formats.

Date Format

Format Display Explanation

dddd","mmmm d","yyyy Monday,

 January 1, 2001

dddd, mmmm, and yyyy print the full day
name, month name, and year

ddd","mmm ". " d", '"yy Mon, Jan. 1, '01 ddd, mmm, and yy print the first three day
letters, first three month letters, and last
two year digits

"Today is " dddd Today is
Monday

h:n:s: AM/PM 12:00:00 AM "n" is used for minutes to
avoid confusion with months

Yes/No

Fields are displayed as check boxes by default on the datasheet. To change the formatting of
these fields, first click the Lookup tab and change the Display Control to a text box. Go back to
the General tab choices to make formatting changes. The formatting is designated in three
sections separated by semicolons. The first section does not contain anything but the semicolon
must be included. The second section specifies formatting for Yes values and the third for No
values.

Format Explanation

;"Yes"[green];"No"[red] Prints "Yes" in green or "No" in red

Default

There may be cases where the value of a field will usually be the same for all. In this case, a
changeable default value can be set to prevent typing the same thing numerous times. Set the
Default Value property.

Access 2007 Tutorial

35 | P a g e C J M a r s e l i s

Field Properties:

Primary Key

Every row in a table must have a primary key that differentiates it from every other row in the
table. In some cases, it is only necessary to designate an existing field as the primary key if you
are certain that every row in the table will have a different value for that particular field. A social
security number is an example of a row whose values will only appear once in a database table.

By default, Access automatically names the first field ID and indicates it as the primary key field.
However, you can designate a primary key field by right-clicking on the attribute and selecting
Primary Key from the shortcut menu or selecting primary key from the Ribbon or Menu Bar

.

The primary key field will be noted with a key image to the left. To remove a primary key, repeat
one of these steps.

If none of the existing fields in the table will produce unique values for every row, a separate field
must be added. Access will prompt you to create this type of field at the beginning of the table
the first time you save the table and a primary key field has not been assigned. The field is
named "ID" and the data type is "autonumber". Since this extra field serves no purpose to you as
the user, the autonumber type automatically updates whenever a row is added so there is no
extra work on your part. You may also choose to hide this column in the datasheet as explained
on a later page in this tutorial.

Indexed Creating indexes allows Access to query and sort rows faster. To set an indexed field, select a
field that is commonly searched and change the Indexed property to Yes (Duplicates OK) if
multiple entries of the same data value are allowed or Yes (No Duplicates) to prevent duplicates.

Validation
Rules

Validation Rules specify requirements for the data entered in the datasheet. A customized
message can be displayed to the user when data that violates the rule setting is entered. Click
the expression builder ("...") button at the end of the Validation Rule box to write the validation
rule. An example of field validation rules include <> 0 to not allow zero values in the row.

Input Masks An input mask controls the value of a row and sets it in a specific format. They are similar to the
Format property, but instead display the format on the datasheet before the data is entered. For
example, a telephone number field can formatted with an input mask to accept ten digits that are
automatically formatted as "(999) 888-7777". The blank field would look like (___) ___-____. An
input mask can be applied to a field by as shown below:

1. In design view, place the cursor in the field that the input mask will be applied to.

2. Click in the white space following Input Mask under the General tab.

3. Click the "..." button to use the wizard or enter the mask, (@@@) @@@-

Primary Key

Button

Access 2007 Tutorial

36 | P a g e C J M a r s e l i s

Field Properties:

@@@@, into the field provided. The following symbols can be used to create
an input mask from scratch:

Symbol Explanation

A Letter or digit

0
A digit 0 through 9 without a + or - sign and with blanks displayed as
zeros

9 Same as 0 with blanks displayed as spaces

Same as 9 with +/- signs

? Letter

L Letter A through Z

C or & Character or space

< Convert letters to lower case

> Convert letters to upper case

Practice 1 ï Create Tables in Access:

1. Download the Video Database from Blackboard.

2. Create the following tables in Design View.

VideoDistributor

A
tt
ri

b
u
te

P
K

D
a
ta

 t
y
p

e

S
iz

e

R
e
q
u

ir
e
d

V
a
lid

a
ti
o
n

R
u
le

V
a
lid

a
ti
o
n

T
e
x
t

F
o
rm

a
t

D
e
fa

u
lt
 V

a
lu

e

C
a
p
ti
o
n

F
K

R
e
fe

re
n
c
e
d

T
a
b
le

Distributor_
ID

Y AutoNumber Distributor
ID

N

Distributor_
Name

N Text 35 Y Distributor N

VideoCategory

A
tt
ri

b
u
te

P
K

D
a
ta

 t
y
p

e

S
iz

e

R
e
q
u

ir
e
d

V
a
lid

a
ti
o
n

R
u
le

V
a
lid

a
ti
o
n

T
e
x
t

F
o
rm

a
t

D
e
fa

u
lt
 V

a
lu

e

C
a
p
ti
o
n

F
K

R
e
fe

re
n
c
e
d

T
a
b
le

Category_
ID

Y AutoNumber Category
ID

N

Category_
Name

N Text 35 Y Category N

Access 2007 Tutorial

37 | P a g e C J M a r s e l i s

VideoTitle

A
tt
ri

b
u
te

P
K

D
a
ta

 t
y
p

e

S
iz

e

R
e
q
u

ir
e
d

V
a
lid

a
ti
o
n

R
u
le

V
a
lid

a
ti
o
n

T
e
x
t

F
o
rm

a
t

D
e
fa

u
lt
 V

a
lu

e

C
a
p
ti
o
n

F
K

R
e
fe

re
n
c
e
d

T
a
b
le

Title_ID Y AutoNumber Title ID

Video_T
itle

N Text 50 Y Video Title

Release_
Date

N Date/Time Y >=#01/01/1
900#

 Short Date Release
Date

Video_
Duration

N Number(Long
Integer)

 N Duration

Distributor_
Name

N (LookUp) Y Distributor Y Video
Distrib
utor

Category_
Name

N (LookUp) Y Category Y Video
Categ
ory

3. Populate (enter the following rows into) the tables:

VideoCategory

Category_ID Category

1 Action

2 Horror

3 Thriller

4 Sci-Fi

5 Drama

VideoDistributor

Distributor_ID Distributor Name

1 Crazy Video

2 SBC Video

3 DVDNow

4 East Park Media

5 Scary Entertainment

VideoTitles

Title ID Video Title Release Date Duration Distributor Category

3 Freedom Day 01/12/2006 140 Crazy Video Action

4 Sea Trek 12/3/2000 190 Crazy Video Sci-Fi

5 Gone with the Air 11/20/1964 300 DVDNow Drama

6 Ex-Terminator 06/13/1999 200 SBC Video Action

7 Buccaneers of the
Caribbean

10/16/2006 119 East Park
Media

Action

Access 2007 Tutorial

38 | P a g e C J M a r s e l i s

II. Table Relationships

A. Introduction to Table Relationships

A primary key in one table should match the foreign key in the corresponding table and the
two attributes must be of the same data type.

B. Create Relationships

1. To view the relationships tool, select Database ToolsĄ Relationships on the Ribbon or
Menu Bar.

2. The Show Table Dialog should appear listing all of the tables in the database as below.

a. If the dialog doesnôt appear, click on the show table icon.

b. If you have created relationships with foreign keys, you will note that those
relationships will automatically appear in the ERD. Youôll find that the tables I
created will be related already

3. Highlight the tables you created in Practice 1 and click on Add.

4. If the relationships do not create automatically, the user can create relationships on
demand. Click on name of attribute which is primary key in a table.

5. Click and drag to corresponding foreign key in the child table.

6. The Edit relationships dialog will appear showing the tables and associated attributes
selected.

7. The relationship type will appear automatically based on information entered when tables
created

8. To minimize data anomalies, enforce referential integrity for all relationships

a. Right click on the relationship line

b. The edit relationship dialog box will appear as shown below.

c. Click on enforce referential integrity.

d. Cascade on Update and Cascade on Delete will appear. Select both.

Access 2007 Tutorial

39 | P a g e C J M a r s e l i s

9. A line now connects the two fields in the Relationship window.

10. Expand the tables by clicking and dragging each table to ensure that each table is
completely visible, there are no scroll bars, and relationships cross at a minimum.

11. Below are examples of the table with additional attributes not visible and then all the
attributes visible (and no scroll bars).

Example with Scroll Bars: Example with No Scroll Bars:

12. The datasheet of a relational table will provide expand and collapse indicators to view
sub datasheets containing matching information from the other table. In the example
below, the VideoTitle table and VideoCopy tableswere related and the two can be shown
simultaneously using the expand feature.

13. To expand or collapse all sub datasheets at once, from the Ribbon select Home ->
Records ->More->Subdatasheet->Expand All or Collapse All.

Access 2007 Tutorial

40 | P a g e C J M a r s e l i s

Practice 2 - Create an ERD:

1. If you havenôt already done so, add the tables that you created in Practice 1 to the

ERD in the Video Database.

2. Make sure that the tables that were provided in the download are shown and that all

the tables are related as shown below:

3. Make sure to enforce referential integrity.

Access 2007 Tutorial

41 | P a g e C J M a r s e l i s

Chapter 8 Queries

I. Introduction

Queries select rows from one or more tables in a database so they can be viewed, analyzed, and
sorted on a common datasheet. The resulting collection of rows is saved as a database object
and can therefore be easily used in the future. This database is called a dynaset, short for
dynamic subset. The query will be updated whenever the original tables are updated. There are
various types of queries. The most typical is the select query that extracts data from tables based
on specified values, find duplicate queries that display rows with duplicate values for one or more
of the specified fields, and find unmatched queries display rows from one table that do not have
corresponding values in a second table.

Queries are used to view, change, and analyze data in different ways. You can also use them as
a source of rows for forms, reports, and data access pages (data access page: A Web page,
published from Access that has a connection to a database. In a data access page, you can
view, add to, edit, and manipulate the data stored in the database. A page can also include data
from other sources, such as Excel).

There are several types of queries in Microsoft Access:

II. Select Queries

A select query is the most common type of query. It retrieves data from one or more tables
and displays the results in a datasheet where you can update the row(s), with some
restrictions. You can also use a select query to group rows and calculate sums, counts,
averages, and other types of totals.

A. Wildcards:

The following table provides examples for some of the wildcard symbols and arithmetic

operators that may be used. The Expression Builder can also be used to assist in writing
the expressions.

Query Wildcards and Expression Operators

Wildcard / Operator Explanation

? Street The question mark is a wildcard that takes the place of a single letter.

43rd* The asterisk is the wildcard that represents a number of characters.

<100 Value less than 100

>=1 Value greater than or equal to 1

<>"FL" Not equal to (all states besides Florida)

Between 1 and 10 Numbers between 1 and 10

Is Null Finds attributes with no value

Is Not Null Finds all attributes that have a value

Like "a*" All words beginning with "a"

>0 And <=10 All numbers greater than 0 and less than 10

"Bob" Or "Jane" Values are Bob or Jane

Access 2007 Tutorial

42 | P a g e C J M a r s e l i s

B. Example - Select query to display all videos in the database with category of drama, sorted
by distributor.

1. From the Ribbon or Menu Bar, click on the Create tab then select Query Design in the
Other section.

2. In the Show Table window, add the tables you created in Part 1.

3. Note the asterisk (*) in the tables you created. This is a SQL special character that tells
the system that you wish to include ALL the attributes in the table to appear in the output.
You can also select individual attributes to print out. The order of the attributes you
select corresponds to the order that those attributes will appear in the output.

a. For example, if you wanted to write a SQL statement which would display all the
attributes in the Category table, you would write the following:

b. SELECT * FROM VideoCategory

c. Access actually allows you to write SQL directly without using QBE (Query by
Example).

d. To write SQL, click on the drop down next to Design ->Results->View.

Create Query in
Design View

Option

An

Asterisk

(*) will

display all

attributes

in a table

Alternatively, you can highlight

individual attributes and drag

each to the bottom pane. To

multi - select attributes, click on an

attribute and then click the Ctrl

key. While hol ding the Ctrl key

down, you can highlight additional
attributes to print

Access 2007 Tutorial

43 | P a g e C J M a r s e l i s

e. Select SQL View

f. The SQL statement that corresponds to the query you are writing in QBE will appear

4. Add the following attributes to the lower pane from each table:

Table Attributes

VideoTitle TitleID, VideoTitle, ReleaseDate , VideoDuration.

VideoDistributor DistributorName

VideoCategory CategoryName

5. In the DistributorName column, select Ascending for the Sort property.

6. In the CategoryName column, enter ñSci-Fiò for the Criteria. Note, you donôt need to
enter the word in quotes as Access will add them automatically.

Click on

TitleID in the

VideoTitle

table and drag

it to the lower

pane. Repeat

for the other
attributes

Click in the

sort

section of

the

attribute

to indicate

if rows

should

appear in

ascending

or

descending
order

Click in the

criteria

section to

specify the

criteria of
the query

Access 2007 Tutorial

44 | P a g e C J M a r s e l i s

7. Under the Results section on the Ribbon or Menu Bar, click the button to run the
query.

8. The results should appear as follows:

III. Parameter Queries

 A parameter query is a special type of query in which the user has the ability to limit the output to
specified rows which correspond to values of rows stored in the data of the table. For instance,
letôs say you have a student table which has information such as first name, last name, address,
status (i.e. freshman, sophomore, junior, senior). You want the user to be able, on demand, limit
the output based on the status without having to write a custom query each time. Essentially, you
want the user to be able to pick a value from the status attribute (a parameter) and limit the output
to just those rows that have that value in the attribute.A query parameter (often called just a
parameter) is a placeholder for an actual value.

Although Accessô parameter query function, it is cursory at best. Essentially when the parameter
query runs, a dialog box will appear prompting the user to enter a value while will limit the rows
retrieved. You can design the query to prompt you for more than one piece of information; for
example, you can design it to prompt you for two dates. Access can then retrieve all rows that fall
between those two dates.

Parameter queries are handy when used as the basis for forms, reports, and data access pages.
For example, you can create a monthly earnings report based on a parameter query. When you
print the report, Access displays a dialog box asking for the month that you want the report to
cover. You enter a month and Access prints the appropriate report.

A. Example of Parameter Query:

In this example, we are going to write a query that allows the user to show the video title,
release date and category name. What makes this different than a typical select query is that
the user can limit the output to a specific category which can be entered as a parameter at
run time. This means that the user can create a custom query without having to rewrite the
select query each time the query is to run.

1. Click on Create ->Other-> Query Design.

2. In the Show Table window, add the VideoCategory and VideoTitle tables.

3. Drag the following attributes to the bottom pane of the query: VideoTitle, ReleaseDate,
and CategoryName

4. In the criteria section of the Category Name column, enter the following: [Enter Category
Name].

Create Query in
Design View

Option

Access 2007 Tutorial

45 | P a g e C J M a r s e l i s

5. Click the run button and a dialog box with the text you entered in brackets will appear

a. When you run the query, Access sees the bracketed parameter and prompts you to
enter a value in the Enter Parameter Value dialog box. The value you enter is
passed to the query as the parameter. It's as if you typed the value directly into the
query design gridð but you didn't have to modify the query.

b. The text you supply within the brackets of the parameter becomes the prompt that
you see in the Enter Parameter Value dialog box, so you should choose your phrase
carefully and make sure it clearly indicates the information that needs to be entered.
The phrase also serves as the name that Access uses to identify the parameter.

6. Enter in a value for which you would like to search. For this example, enter Action and
click OK

a. After you enter the value, Access processes the query, selects the matching data,
and presents the results in a datasheet.

b. Remember the value you enter must match exactly to the value stored in the table
(including that the case must be identical) or no rows will return.

c. If you press ENTER without supplying a value, Access displays an empty datasheet
as you are essentially telling the database to return rows with a null category.

Prompt

text

enclosed

within

brackets

Access 2007 Tutorial

46 | P a g e C J M a r s e l i s

IV. Crosstab Queries

You use crosstab queries to calculate and restructure data for easier analysis of your data.
Crosstab queries calculate a sum, average, count, or other type of total for data that is grouped
by two types of informationð one down the left side of the datasheet and another across the top.
When creating a crosstab query, you must specify one or more Row Heading(s) options, one
Column Heading option, and one Value option.

 Row Heading: This crosstab option is represented vertically in your dataset. Good
candidates for this grouping are product types or other categories of data you want to
aggregate. You can have multiple row heading columns, so multiple column aggregations
are allowed.

 Column Heading: This crosstab option is represented horizontally in your dataset. Good
candidates for this grouping are sales quarters or other categories of data for which you
want only one grouping aggregation, because only one column heading is allowed in a
crosstab query.

 Value: This crosstab option is the data that's typically summarized in your crosstab query.
It's the product of cross-referencing your Row Heading(s) and your Column Heading
aggregation.

A. Examples:

This example will create a crosstab query that will display the total number of movies that a
distributor filmed in a specific category.
1. Select Create ->Other-> Query Design.

2. In the Show Table window, add the VideoCategory, VideoTitle and the
VideoDistributor tables.

3. In order to change the query into a crosstab query, under the Query Type section on the
Ribbon or Menu Bar, select Crosstab.

Access 2007 Tutorial

47 | P a g e C J M a r s e l i s

4. Double-click the VideoTitle attribute in the VideoTitle table to add the attribute to the
lower pane. Select Count for the Total property and Value for the Crosstab property.

5. Double-click the DistributorName attribute in the VideoDistributor table to add the
attribute to the lower pane. Select Group By for the Total property and Column Heading
for the Crosstab property.

6. Double-click the CategoryName attribute in the VideoCategory table. Select Group By
for the Total property and Row Heading for the Crosstab property.

7. Under the Results section on Ribbon or Menu Bar, click the button to run the
query. The results should appear as follows based upon the data you entered earlier:

Access 2007 Tutorial

48 | P a g e C J M a r s e l i s

V. Action Queries

An action query is a query that makes changes to or moves many rows in just one operation.
There are four types of action queries

 Append

 Make table

 Update

 Delete.

A. Append Query

An append query adds a group of rows from one or more tables to the end of one or more
tables. For example, suppose that you acquire some new customers and a database
containing a table of information on those customers. To avoid typing all this information into
your own database, you'd like to append it to your Customers table.

B. Make Table Query

A make-table query creates a new table from all or part of the data in one or more tables.
Make-table queries are helpful for creating a table to export to other Microsoft Access
databases (Microsoft Access database: A collection of data and objects (such as tables,
queries, or forms) that is related to a particular topic or purpose. The Microsoft Jet database
engine manages the data.) or a history table that contains old rows.

Letôs consider the following scenario to explore the update and delete queries. Letôs say we
are working on a database for a hair stylist system (note ï you do not have this database.
Iôm just providing an example). The customer table currently holds 29 rows and the structure
looks like the following.

C. Update Queries:

An update query makes global changes to a group of rows in one or more tables. The update
statement changes the values of single rows, groups of rows, or all the rows in a table

If you have a update statement with no criteria clause you will update all the rows in the table.
Accordingly, unless you truly want to update all the rows, consider a condition or filter.

1. Update Query with Criteria:

As you can see, the customer table has a gender attribute. The value of the field should
be male or female. However, the current value of the field is a number (1 for male, 2 for
female, and 3 for other). Letôs write an update query to change the values of the field for
women from a 2 to female.

javascript:AppendPopup(this,'AcMicrosoftAccessDatabase_3')
javascript:AppendPopup(this,'AcMicrosoftAccessDatabase_3')
javascript:AppendPopup(this,'AcMicrosoftAccessDatabase_3')
javascript:AppendPopup(this,'AcMicrosoftAccessDatabase_3')
javascript:AppendPopup(this,'AcMicrosoftAccessDatabase_3')

Access 2007 Tutorial

49 | P a g e C J M a r s e l i s

a. Select Create -> Query Design to display the show table dialog box

b. Select the table(s) from which the rows are to be update. In this example, Iôll select
customer.

c. Click on the update query icon on the toolbar. Youôll note that the
parameters in the lower pane of the query window change to limit the functionality to
selection of the update criteria.

d. Click on the attributes upon which the rows to be updated will be selected. For this
update query, Iôll click on gender as I only want to update rows from the customer
table if the gender is a 2.

e. In the Update To field ï enter the value to which you want the current values
changed. In the Criteria field ï enter the current value of the field.

f. Click the Run button

g. The message below returns indicating the number of rows which are to be updated

h. Repeat steps to update rows with a value of 1 in the gender field to ñMaleò and a
value of 3 to ñOtherò.

2. Update Query without Criteria:

We have a status field in our customer table which was designed to describe how
frequently the customer comes to the salon. The field is currently not used. Weôd like to
populate (add data) to this field. Presently, our customer table is populated only with
regular customers so we will update all of the rows to have a value of Regular in the
status field.

All of the steps are the same to write the query except the criteria field will be left blank.

Access 2007 Tutorial

50 | P a g e C J M a r s e l i s

D. Delete Queries:

A delete query permanently deletes selected rows from one or more tables. For example, you
could use a delete query to remove products that are discontinued or for which there are no
orders. With delete queries, you delete entire rows, not just selected fields within rows.

If you have a delete statement with no criteria clause you will delete all the rows in the table.
Accordingly, unless you truly want to delete all the rows in the table, it is essential to consider
the condition or filter.

Remember ï a delete statement only affects the rows in a table - even if you delete all the
rows, the table structure still exists. In other words, the table is still there but there will be no
rows in the table.

The process to write a delete query is essentially the same as with an Update Query.

1. Delete Query with Criteria

Letôs say the shop decides to market solely to men so they decide to remove all
customers who are woman from the database.

a. Select Create -> Query Design to display the show table dialog box

b. Select the table(s) from which the rows are to be deleted. In this example, Iôll select
customer.

c. Click on the delete icon on the toolbar. Youôll note that the parameters in
the lower pane of the query window change to limit the functionality to selection of
the delete criteria.

d. Click on the attributes upon which the rows to be updated will be selected. For this
update query, Iôll click on gender as I only want to update rows from the customer
table if the customer is female.

e. In the Criteria field, enter the appropriate criteria. Iôll enter ñFemaleò

f. Click the Run button

Access 2007 Tutorial

51 | P a g e C J M a r s e l i s

2. Delete Query without Criteria

Letôs say you decide to delete all the rows from the gender table:

VI. Aggregate Functions with Group By clause

A Group By clause specifies that you wish to perform some type of aggregations (sum, average,
count, or other type of total for data that is grouped) but the grouping may not appear as a
crosstab.

A. Example of Count and Group by Clause:

This example will show the total number of movies in a given category.

1. Select Create ->Other->Query Design.

